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NSWC/WOL/TR 75-195 20 December 1975
NORMAL IMPINGEMENT OF A SUPERSONIC JET ON A PLANE -~ A BASIC
STUDY OF SHOCK~INTERFERENCE HEATING

This report presents a theoretical method to predict the severity
of shock-interference heating caused by the impingement of a shock
wave on a blunt fin. The problem of a supersonic jet (resulting
from the interaction of the incident shock with the fin bow shock)
impinging on the fin surface was studied based on the one-strip
formulation of the method of integral relations. A rational
engineering rolution for the stagnation-point velocity gradient
(and hence the peak heat-transfer rate) has been obtained for the
planar case. The present jet~impingement model could be coupled
with the shock-interference model of Edney to predict type IV shock-
interaction effects.

The present study was sponsored by the Naval Air Systems Command,
AIR-320C, under Air Task No. A320-320C/WK023-02-003.
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SYMBOLS
speed of sound
.o , Y
specific entropy function, p/p

equal to zero (planar case) or one (axisymmetric case)

Mach number

static pressure

1/2
)

coordinate axis along the plate surface

total speed, (u2 + v2

velocity component in the r-direction

velocity component in the y-direction

T e R TP ) PO RN NVR PR LR

free-stream velocity of the jet
coordinate ax.s perpendicular to the plate surface

constant, (y - 1)/2y

xatio of (constant)} specific heats

the angle the upper boundary of the wall jet makes with
respect to the negative y~direction (see Fig. 1}

detachment distance of the shoc¢k wave or of the wall-jet
boundary (see Fig. 1)

location of the sonic point at the wall

;

the angle the flow behind the shock wave makes with respect
to the negative y-direction

density

the angle the shock wave makes with respect to the negative
y~direction (see Fig. 1)

method that employs the equation of global mass
conservation, Eq. (41)

method that employs the equation of modified continuity,
Eq. (7)

method that employs piecewise smooth approximating functions
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SYMBOLS (Cont'd)

at free stream

INTRODUCTION

SP method that imposes the condition of satisfying Eg. (56)
at r =0
Subscripts
j at the upper boundary of the wall jet
i s at the shock wave
%~ w at the plate surface
é i n at the surface sonic point
% ' 0 at r =20
% i 1 at the line of the jet edge, r = 1
§ 2 at r = 1/2

As an extraneous shock wave impinges on a blunt body in a

hypersonic flow, greatly increased aerodynamic heating and pressure
over a very small region near the impingement point have been
observed (Refs. (1) to (5)). The incident shock wave may be
generated either by boundary-laver separation (Refs. (3) to (5)) or

(1)

(2)

(3)

(4)

(5)

P . L I

Edney, B., "Anomalous Heat Transfer and Pressure Distributions on
»lunt Bodies at Hypersonic Speeds in the Presence of an Impinging
shcwk," .FA Report 115, The Aerconautical Research Institute of
Swe.*en, Stockholm, 1968

Hains. F. D. and Keyes, J. W., "Shock Interference Heating in
Hypersonic Flows," AIAA Journal, Vol. 10, 1972, pp. 1441-1447

Hiers, R. 8. and Loubsky, W. J., "Effects of Shock-Wave Impinge-
ment on the Heat Transfer on a Cylindrical Leading Edge," NASA
TN D-3859, Ames Research Center, Moffett Field, Calif., 1967

Kaufman, L. G., IIZ, Korkegi, R. H. and Morton, L. C., "Shock
Impingement Caused by Boundary Layer Separation Ahead of Blunt
Fins," ARL TR 72-0118, Aerospace Research Laboratories, WPAFB,
Ohio, 1972

Gillerlain, J. D., Jr., "Experimental Investigation of a Fin-
Cone Intexference Flow Field at Mach 5," NSWC/WOL/TR 75-63

Naval Surface Weapons Center, White Oak Lab., Silver Spring, Md.,
1976
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by an extraneous surface (Refs. (1) to (3)). Six different types of
shock-interaction patterns have been classified by Edney based on an
extensive experimental study (Ref. (l1)). Among them, the type IV
interference pattern produces the most severe shock~-ir’ ~rfarence
heating and pressure. This interference results in a supersonic jet
embedded in the subscnic flow field. 1In fact, peak interference
heating rates up to 17 times the interference-free stagnation-point
value and peak pressures up to eight times the free-stream pitot
pressure level have been measured by Hains and Kev-2s (Ref. (2)).

Despite its significance, past analyses (Refs. (1) to (3) and
(6)) on the type IV interference were inadequate and generally
empirical in nature. Recently, a time-dependent finite~difference
rmethod was used by Tannehill, Holst and Rakich {(Ref. (7)) to solve
the Navier-Stokes equations for the two-dimensional shock-
impingement problem. Although, in principle, their computer program
can be used to compute all six types of shock interactions, only
type III interference results have been published so far. However,
the elaborate computations involved and the extensive computer time
required by their method make it highly desirable to have some
relatively simple, yet reasonably accurate, approximate method.
Such an approach has in fact been pursued by Edney (Ref. (1)) and by
Keyes and Hains (Ref. (6)). However, their empirical treatments of
the jet-impingement process suggest the need for a more ratiocnal
study. This is the subject of the present paper.

The impingement of a balanced supersonic jet on a flat surface

was studied both theoretically and experimentally for an axisymmmetric

jet at normal impingement by Gummer and Hunt (Ref. (8)), and
theoretically for a plane jet at an arbitrary angle with the surface
by Bukovshin and Shestova {(Ref. (9)). Both groups have used the
scheme I of the method of integral relationz in its crudest form
{one strip} (Ref. (1C)). However, in both studies the centered

(6) Keyes, J. W. and Hains, F. D., "Analytical and Experimental
Studies on Shock Interference Heating in Hypersonic Flows,"
NASA TN D-7139, Langley Research Center, hampton, Va.. 1973

{7) Tannshill, 5. €., Holst, T. L. and Rakich, J. V., "Numerical
Computation of Two~Dimensional Viscous Blunt Body Flows with
an Impinging Shock." AIAA Paper 75-134, AIAA 13th Aerospace
Sciences Meeting, 20-22 Jan 1975

(8) Gummex, J. H. and Hunt, B. L., "The Impingement of a Uniform,
Axisymmetric, Supersonic Je: on a Pzrpendicular Flat Plate,”
The Asronautical Quarterly, Vel. XXII, Part 4, 1971, pp. 403-420

(9) Bukovshin, V. G. and Shestova, N. P., "Incidence of Plane
Supersonic Jet on a Flane at an Arbitrary Angle.," Fluid Dynamics,
VGlo 2' No. 4, 1967; p_p- 9?"100

(10} Belotserkovskii, 0. M., ed., "Superscnic Gas Flow Around Blunt
Bodies," NASA Technical Translation TTF~453; C.une 1967
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expansion to smbi:nt pressure of the jet-edge streamline behind

the shock wave wa:z not properly considered, and instead an empirical
condition of senic velocity at the jet edge behind the shock wave
was imposed. i‘Urthermore, at low supersonic Mach numbers, both
South (Ref. (1), and Gummer and Hunt (Ref. (8)) have pointed out
the singular behavior of the governing equation of the scheme I of
the method of integral relations. This singularity, which has no
counterpart in an exact solution, will cause the computation in the
shock layer to break down. This is of special importance to us
since, according to Edney (Ref. (1)), low supersonic Mach numbers
are in the range of particular interest to the shock-interference
problem.

The singular: '+ can be shown to be easily removed if the
governing 4! fferent.al equations are integrated -nce again along the
body-surface direction. This constitutes the scheme III of the
method of integrai relations (Ref. (10)). This approach was
utilized in the prescnt study to generate solutions to the one-strip
approximation equations of the jet-impingeuwent problem. As we shall
show later, in contrast to th» findings reported by Gummer and
Hun: (Ref (8)), the one-strip approximation does yield solutions
the. .atirfy 11 well--posed boundary conditions. A two-strip
for - atiov oi the problem h:s alsc been completed, but solutions
hav. 3t yet L. en sarried cut. For the sake of completeness, this
ie i: :ude’® 1ir uw “ppendi t.

PROBLEM FORMULATION

GOVERNING EQUATIONS

Congider the flow geometry schematically shown in Figure 1.
The origin of the coordinate system is placed at the stagnation
point of the flat surface. The prohlem is considered to be steady
and two-dimenw.onal or axisymmetric, with r and y axes aleng and
perpendicular to the plate surface, respect.vely, and the free-
stream jet flow is in the negative y~direction. For simplicity, the
gas is assumed to be inviscid and obeys the perfect gas law; its
conditions are characterized by the pressure, p, density, »,
temperzture, T, and velocity components, u and v, in the r and y
directions, respectively. Ahead of the shock wave, the jet is
assumed to be uniform with constant static pressure equal to the
ambient value. These assumptions are cf the usual kind that are
generally made by other investigators. Heat-transfer rates can be
calculated using the well-known boundary-layer results once the
pressure distribution alsng the plate surface is determ’ -ed from the
inviscid approach.

{11) South, J. C., Jr., "Calculation of Axisymmetric Supersconic
Flow Past Blunt Bodies with Sonic Corners, Including a Program
Description and Listing,” NASA TN D-4563, Langley Research
Center, Hampton, Va., 1968
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. Under these conditions, the governing ceonservation eguations
2y are 2

[ a o a .
\ 9 1y o ¢.,.] =
. } ar(r pu) + 3y(r pVv) 0 (1)
| ,
3 3 3 3 2 ;
i =—(rlouv) + 3—yIrJ(Bp + pv“)] = 0 (2)
9 ] 2 ] ~
splr” (Bp + pu™)] + ay(r puv) = jBp (3)
and 2
n =01 ~ g%) (4)
where %
B = (y -1}
2y g
)
g2 = u? 4 2 3

j =0 or 1l for two-dimensiumal oOr axisymmetric jets, respectively,
and vy is the ratio of (constant) specific heats. The variables

are all nondimensional. Thermodynamic variables are non-
dimensionalized by the corresponding stagnation values in the free- !
stream jet, velocities by the maximum adiabatic velocity and ;
distance by the jet radius. Obviously, the magnitude of the non-
dimensional free-stream jet velocity is related to the free-stream
jet Mach number by

1/2 ?
(v - 1)M2 ’
V, = 3
2 + (y - 1)M_
There is also a geometric relation
de _
ar - - cct O (5)
in the shock layer, and
de _ _
3y = ~cot $ (€)

in the wall-jet layer, where € is the detachment distance of the
shock wave or of the wall jet, ¢ and § are the angles the shock
wave and the upper boundary of the wall jet make with respect to
the free-stream jet flow direction, respectively (see Fig. 1),

The method of integral relations raguires that the governing
partial differential equations be cast into divergence form, such
as Equations (1) to (3). However, combinatinns of these ecquations
can also be reprusented in divergence form. For example, one may

7
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combine the r2:lation of constant entropy along streamlines, the

energy equation (4), and the continuity equation (1) to yield a
modified continuity equation

o . 1/ (y-1)
& [rlua - o ]+ & Pva - dh ]- 0 (7)

which was the original, widely employed formulation of
Belotserkovskii (Ref. (12)). For a sphere in supersonic flow,
Xerikos and Anderson (Ref. (13)) found that the one~strip formulation
based on the modified continuity equation yielded results which

agree with experiments better than that based on the original
continuity equation. The difference is expected to disappear when
the number of strips increases. In the present one-strip formu-~
lations, however, Equation (7) will be used instead of Equation (1).

An additional simplification arises when only one strip is
used in the formulation, namely, the strip boundaries are either
the shock wave or streamlines. Along the piate surface, the
constant entropy relaticnship can be used to relate pressure to the
surface velocity. This algebraic relation can thus be emplcyed to

replace the radial momentum equation (3), as we shall see in the
next section.

The flow field can be divided into two regions, a shock-layer
region (0 £ r £ 1) and a wall-jet region (1 £ r £ n), wheze r = n
is the location of the sonic point at the wall

uw(n) = aw(n)

and it is unknown, a priorxi. The two regions are related by the
regquirements that, at r = 1, ¢, E and } are continuous and ¢ and §

are governed by the Prandtl-Meyer expansion relation, where E is
the specific entropy function

E = p/o"

and ¢ is the stream function. If 6 is the anglie the flcw behind the

shock wave makes with respect to the negative y~direction, then the
oblique snock relations give

(y + l)M:

3 5 - 1lltan o (8)

cot 0, =
1 Sin gy - 1) 1

(M

o0

{12) Belotserkovskii, 0. M., “"Flow With a Detached fhock Wave About

a Symmetrical Profile," Journal of Applied Mathematics and
Mechanics, Vol. 22, 1958, pp. 279-296

(13) Xevrixos, J. and Anderson, W. A., "An Experimnental Investigation

of the Shock Layer Surrounding a Sphere in Supexsonic Flow,"
AIAA Journal, Vol. 3, 1965, pp. 451-457
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where the subscript 1 denotes quantities evaluated at r = 1. Now,
81 is related to 61 by

5. =0, +(LF1L L2 tan t[{1 =21} M - 1) ”
15 %1 T\Yy =1 an My +1 3

Y +
-1 2 172
- 74 o
tan (hsl 1) (9)
where
2 2
2p0.95 .
W - o _ ZqJ
J (Y - l)P.. (.Y - l) (l - qﬁ)
and
2
M2 - zqsl
sl

(v - (1 - g°p)

The subscripts j and s denote, respectively, quantities evaluated

at the upper boundary of the wall jet and right behind the shock
vvave. Obviously,

2 q=Y/(y-1)
pj = pm = [l + _(_‘_Y__:z._%] (10)
- 2 1/y
oy (pj/Lj) (11)
Ej = E; (12)
and
P 1/2

The specific entropy function evaluated right behind the shock at
r =1, Esl’ depends only on M_, Y and Oy Hence, from Equations ({8)

to (13), we obtain

§, = fun(M_,v.0,)

Since the upper boundary of the wall~jet layer, y = €(r) for r 2 1,
is a streamline, we have

W emves e
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V.
g;wiucota (14)

For § in the first two quadrants only, we may combine Equations (4)
and (14) to yield

. = 8 15
uy = gy sin (15)

. -q. 8 1
vy qy cc (16)

The signs are determined from the fact that u. > 0 for r 2 1. The
boundary conditions are: J

A. At thewall, y =9

" o hen s

= 1
Ve 0 (17)

_ 8
E, = Eg, (18) .

where EsO is the specific entropy function evaluated right behind
the shock at r = 0.

B. At the centerline, r = 0

u=_0 (19)
E=E, (20)
o = n/2 (21)
C. At the shock wave, y = e(r), r £ 1, the Rankine~Hugoniot {
relations for the gas apply: ;
u, = VQ[_{_C.?‘:_%. (M2sin%o - 1)] (22)
(y + 1)M
2 2
v, = Vm[?' (Mzsin o - 1) . 1] (23)
(v + 1)M
2 1-1/(y-1) + 2_..2
Py = [1 + 4 -21)M ] [ (v l)MmS;n 02 (24)
2 + (y -~ )M 8in“c
10
Dal RN T Yo —ggvﬁq;‘-“ T T
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Y
E [Zmesin g - {(y - 1) 2 + (y - 1)M£sin20] (25)
s (y + 1) (y + l)Misinzo

= Y (26)
Pg = EgPg

D. At the jet boundary, y = e€(r), r 2 1, Equations (8) to (16) :
apply.

METHOD OF INTEGRAL RELATIONS -~ SCHEME I

A. SHOCK-LAYER REGION. Integrating the axial momentum
equation (2) from 0 to €, and utilizing the identity  that

g (r) e (
3_( ] - de_j

f ar(1: puv)dy = f puvdy &L PsYsVs

v 0
we obtain
d (r)rj uvdy - QErj uv,_ + rj{B( - ) + v2 -0 v2} =0 (27, i
ar P 2 dr PsYsVs Pg Py PsVs ww ’ ;

0

In the first approximation, the integrand is assumed to be linzar in §
y so that Equation (27) is approximated by

4 3 3 - . -
= {r Cpsusvs] + 2r {B(ps pw) + psvs(vs + u_cot o)} 0 (28)

s

Equations (5) and (17) have been used in the above eguation.
Similarly, Equation (7) can be integrated over the thickness of the
shock layer to yieid

. 1/(y-1) 2 1/ (y=1)
g; *rje[ys(l - qg) +u, (1 - u, ) }i

j 2 l/ (Y"'l)
+ 2r' (1 - qg) [vg + u,cot 0] =0 _ (29)

N S

From Equations (4) and (18) and the definition of the specific
entropy function, we obtain the algebraic relation that

N (30)
Py E g

Since, for fixed values of M_ and y, the quantities evaluated at the
shock depend only on o (as can be seen from the Rankine-Hugoniot

11
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relations), Equations (5), (28) and (29) are the governing equations
for the variables €, 0 and u_. This constitutes the scheme I of the
method of integral relations. 1Initial conditions are Equaticns (19)
and (21). It is well known in related blunt-body problems that the
missing third initial condition is supplied by the regularity
condition at the surfate sonic point (Refs. (10) to {(12)). For the
jet-impingement problem, this requires the consideration of the wall
jet since the surface sonic point lies outside the shock layer

(Ref. (8)). Before we proceed any further, it is important to point

out a singular feature of the scheme I formulation. The singularity
occurs as

d(psusvs)

do
in Equation (28) and %% becomes unbounded. This has no counterpart

in an exact solution. As was remarked by South (Ref. (11)) and by

Gummer and Hunt (Ref. (8)), the singularity occurs in the shock

layer for M_ ~ 2. In fact, Gummer and Hunt found no solution that
d{p_u_v_)

will satisfy the wall-jet relations. Since ———533—5— will appear

in any method that approximates the integral in Equation (27) by an
end-point guadrature formula, this singuiarity is peculiar to scheme
I of the method of integral relatiorns and cannot be removed by
utilizing multi-strip formulations, although the particular Mach
number at which the singularity occurs might be different from that
of the one~strip formulation. If, on the other hand, the governing
ordirary differential eyuations are integrated again in the r-
direction, the singularity disappears since we now have algebraic
equations. This is the scheme III of the methocd of integral relations,
which will be discussed after we complete our consideration of the
wall-jet region in the scheme I formulation.

=0

B. VALL-JET REGION. Integrating Equations (2) and (7) from
the place to the upper boundary of the wall jet, we obtain

d_r,J j - =
dr(r epjujvj] + 2r B(pj pw) 0 (31)

and

. 1/(y-1) 1/(y-1)
g-;{r%[uj(l - q§) +u (1 - u:) ]} =0 (32)

Because of Equation (14), these governing equations are considerably
simpler than the corresponding ones in the shock layer. Utilizing
Equations (15), (16) and (30}, one can conclude that Equations (14),
(31) and (32) are the governing equations for the variables €, §

and u,- Initial conditions are, at r = 1

12
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1l
uw = uwl
6 = 61

The first two are supplied by the shock-laver solution, and the third
by using Equation (9) and the shock-layer sclution.

Note that
1/(y-1) (2-v)/(¥y-1) du
d 2, _ 2 y + 1} 2 W
Ef[éw(l - u) ] = (1 - uw) [l - (Y — l)uw]af—

Equation (32) becomes singular as

1/2
= L;_J'. = )
uw (Y + 1) - uwn (33)

Utilizing the energy equation and the definition of the speed of
sound

v - 1/2
.- [<, 2p1)e} (33a)
one may show that Equation (33) implies that
u, = a, (33b)

Therefore, the singular point is the surface sonic point, r = n.
Since the wall velocity at r = n is continuous for a smooth plate,
we may impose the regularity condition that, at r = n

Q 2 ‘1/(Y-l) )
- 2 Yyn = 7 Byp! I&n _
1+ cscGn(l cot 6n) . , 1/0D) (= coth)
qj< —-qj)
(p; = p, )
- 2Bcotd cchG -J—-jrli—— =0 (34)
n n
P39

a
so that a;E is finite there. The subscript n denotes quantities
evaluated at r = n. Equation (34), derived after some tedious but
straightforward algebra frcm Equations (31) and (Z2). provides the
missing initial condition of the shock-layer equations. This

completes the formulation of the scheme I of the method of integral
relations.

13
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METHOD OF INTEGRAL RELATIONS ~ SCHEME III

Since Gummer and Hunt (Ref. (8)) could not *ind solutions that
will satisfy the wall~jet equations by the scheme I of the method of
integral relations, and since they and South (Ref. (11)) have pointed
out the singular behavior of Equation (28) for low supersonic Mach
numbers, the scheme III of the method of integral reiations is used
in the present study. Two different formulations have been
considered and they will be dis~ussed in the following.

A. ONE-BY-TWO SOLUTION. Consider first the simplest case that
the flow field between r = 0 and r = n ic divided into two zones:
0 £rlandl Sr $n. Consider, in the shock layer, the
simplest approximation

- %% = coto I r coto1 (35)

which can be integrated to yield

2
r cotol

€ = gy - —5— (36)

where €q = e{(r = 0). Equation (36) gives the relation between the
shock distances ang ¢, as

coto, = 2(so - El) (37)

Integrating Equation {.8) from r = 0 to 1 and utilizing Equation (19),
we obtain

1
3 - =
Ps1Y51Ys161 *+ 2./.r {B(ps pw) + psvs(vS + uscoto)]dr 0 (38)
0

The terms inside the curly brackets are even functions of r. Hence,
we may use the simplest approximating function

N _ 2
£(r) = £ + (£, - £o)r

and Equation (38) thus becomes

4 2
Ps1%s1Ve1®1 * TFIIEF 37’[psovso + Blpgy - Pwo)]
2 - =
t OV (Pg1Vgy (Vgy * Ugyo0tay) + BlPgy =~ Ryt =0 (39)

Obviously, Equation (39), being an algebraic equation, is nonsingular.
Similar application of the simplest approximating function to
Equation (29) vields

-
‘g =
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o 1/(y-1) o 1/(y-1)
1 [usl(1 = 9q) U,y - Y1) ]
2 /-1 , /(-1
v (1 = vyl 2(1 - g9;,)
B G S N € ) R T+ (vgy * ugycotoy) =0 {40)

We could use, instead of Equation (40), an equation of global mass

conservation
£
p.Vv .

TRyt e
Y

£
~ 1
2 (pslusl * 1Y)

r=1

Obviously, Pl is related to Ul by Equations (4) and (30) as

1/(y-1)
1l - u2
o = | w1
wl Eso

Note that Equation (41) is independent of the approximating functions
used in the radial direction. It depends only on the assumption of
a linear variation of pu with y, which is always the case for a one-

strip formulation.

N

In the wall jet, 1 S r > n, consider

de

& s cotd = ————E-—7~ [(1 - rz)cotdn + n(r2 - nz)cotGl] (42)

n{l - n%)

which yields, after a straightforward integration process

(r2 - 1)

B - SUS... S
4n (1l -~ nz)

- 3 -
€ =g [2(n cotG1 cotén)

+ (r2 + 1)(cot6n - ncotél)]

which gives the relation between En and Gnas

(L -~

2
_ n’)
€ = i (ncotGl + cotcn)

n Sl +

Equation (31) can be integrated from r = 1 to n to yield

15
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- 2 jc 1 - 1 j - =
quj(n .ns:LmSncosGn 5151n61cosél) + Zglpr (pj pw)dr 0 (45)

1
Consider the simplest approximation that

2

N

P

2 2
- [(n® - ¢ )P, *+ (r

- g, 1/(n% - 1)

Equation (45) thus becomes

- 0.q

3 - .
3 J(n €,5iné cosé €,5iné, cosé,) + ZB*pjkl

,
_ TPy (n7ky = kp) * By ky - Ky)] i o

(46)
(n? - 1)
where - .
ky = 9 _ oy 4
and _
k, = 3“5 4 3
Similarly, Equation (32) yields
. 1/(y-1) 1/2 1/(y-1)
] - g° - fy -1 2
n en[?j(l qj) 51n6n + \Y - 1) (;-I—I) ]
2 1/(y-1) 2 1/(y-1)
= el{?j(l - qj) sinél + uwl(l - uwl) (47)

The basic governing nonlinear algebraic equations for the one-by-
two formulation are Equations (39), (40) or (41), (46), (47) and
(234) for the five basic unknowns: €gr €3¢ Nv Uy and Gn. We note

that it is the consideration of the surface sonic point which
provides two conditions (Egs. (33) and (34) at r = n) with one
unknown (the location of n) that enables us to close the system.

We shall designate solutions obtained from using Equation (40), the
modified continuity equation, by the symbol MCE, and those from

Equation (41), the global mass conservation equation, by the symbol
GMC.

B. ONE-RY~THREE SOLUTION. 1In this formulation the wall-jet
region is not mcdified. The shock layer is divided into two regions:
0 £x s % and % S r S 1. Denote the quantities evaluated at
r=3j by the subgcript 2 and consider a continuous approximating

function

16
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- g—% = coto = r[8(l - r‘)coto, + (4r? - 1)cota;1/3 (48)

Direct integration yields the equation of shock detachment distance

€ = €, = rz[(Bcoto - cotol) + 2(coto3 - 2cot02)r2]/6

0 2

After some algebra, one may cbtain the follcwing relations between
the shock angles and the detachment distances:

coto2 = (9eO - €y < 852)/3 (49)
coto, = (3282 - léel - 1850)/3 (50)

Equations (28) and (29) are of the form
&y rlg=o0 (51)

where g is an even function of r. Therefore, one may obtain by
straightforward integrations that /2

+ rigdr = 0 (52)
and l.

£, - £, +/r3gdr = 0 (53)
0

The even function g may be approximated by the Lagrangian inter-
polation formula

£, - £

2 0

g% g, - £ (1 - ar®) + g (4% - 115?72 + 16,1 - £H1r%/3 (54)

so that the integrals in Equations (52) and (53) become

1/2
rJgdr = 2-(j+l)(ﬁogo + Hyg, + Hzgz) (52a)
0
and
1 .
./r rngdr T I49p * Ilg1 + 1,9, (53a)
0
where i 1 } 5 . 1 (52b)
0 (3 + 1) 4(3 + 3) §(3 +5)
- -1
B = g3+ G F5) (52¢)
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3+
2 3IFF NG A5 (524)

o]
|

_ Y _.__s s
L G FD CGFy T TEE (53b)
' _ (34 + 7) 2
z NEITE NG FE (53c) i
and
L = 32 (53d)

2 {3+ 3Y(3 + 57

We therefore bave four nonlinear algebraic equations obtainable from
Equations (28) and (29). 1In addition, there are Equations (46), (47)
and (34) of the wall-jet region. We now have two additional basic
variables, namely, £y and Uoa- The system is again closed. This

formulation is termed the one~by~three MCE method. One may also
consider a one-by-three GMC method by using Equation (41) to replace
the equation obtained by integrating Equation (29) from r = 0 to 1.

It is obvious that other approximating functions can also be
used. For example, if, instead of the continuous representation as

given by Equation (54), the even function g is assumed to be only
piecewise smooth such as

1A
a]
IA

g =g+ 4r2(92 - go) for O

N

and

g = %[492 - gy + 4r2(g1 - 92)] for Sr <1l

W

Bquations (32) and (53) still hold but the constant coefficients; H's
and I's, will be modified accordingly. This constitutes the one-by-
three MCE-PWS method and the corresponding one-by-~three GMC-PWS
method. Of course Equations (48) to (50) will also be replaced by
the following piecewise smooth equations:

For 0 X r hY i
= L] 2
€ 80 r COt52

angd for % Sr sl

2
€= €, = ii£~1%%£l [2(8 cotG2 - cotél) + (4r2 + 1)(cot61 - 2 cotéz)]

whera

cotG2 = 4(eo - ez)

T e e %
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and

"‘2 - —
cotd, = 3(552 2¢€ 3¢

1 1 0’
Differei* approximating functions can also be used in the one-by-two
method. One possible utilization is illustrated in the following
consideration of the stagnation-point quantities.

C. STAGNATION-POINT VELOCITY GRADIENT. Of particular interest
to us is the stagnation-point velocity gradient which is directly
related to the heat-transfer rate. Since u, is determined only at

discrete locations in the scheme III of the method of integral
relations, differentiation of an interpolation formula is not

accurate. This difficulty can be circumvented by the following
method.

Dividing Equation (28) by rj and taking the limit as r » 0,
we obtain

. dus 2
(L + 3)egevsofolar 0 t2 {B‘Pso = Pyo) ¥ psOVSO} =0

£

Similarly, Equation (29) yields

. , 1/(y-1)fdu_ du o 1/{y-1)
(1 + 3)€0 (1 - VSO) T . + T 0 + ZVSO(l - VSO) = 0

Eliminating (dus/dr) from the above two eguations, we obtain
0

4 28 (1 2 )l/(Y-l)( )

u - v o) ~ P

( w) = s s0 w0 (55)
0

dr (1 + J)Dsovsoeo

At r = 0, ¢ = n/2, From Equations (23) to (26), (30) and {55), one
may conclude that, for fixed values of M, and Y, the stagnation~
point velocity gradient is inversely proporticnal to the shock
detachment distance at the stagnation point. Figure 2 shows the
du
2y e _,._'i".. < i =2
value of (1 + j)colay 0 as a function of M_ for vy = 1.4,

2.,
"_’.‘.‘_) ] (3‘1@.) (99.) - Mw"’w(és.)
9t Jo N3 JoNESy (v + 1wt o

we may also cbtain the relation that

Since
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2 - 2 4
o! E(gg) = (v + DIM[B8(Pgg = Pyg) + psOYsO‘
dr/,

0 . 2
(1 + 3) (M - l)psovsovweo

(56)

Equation (56) may be used to generate slightly more complicated
equacions for the shock-layer thickness and the shock angle. For
example, for the one-by-two method, we may replace Equation (35) by
the following more complicated function

dE_ ~ 2_ ' 2 .
- 3F = coto = ri(r 1)00 +r cotcl] (57) {

Equations {36) and (37) are thus replaced by, respectively,

- 2oV _ L2, _ 2
E =gy +r [00(2 r) r cotdl]/4 (58)
and

COtO’l =g

t

0 + 4(eo el) {53)
The forms c¢f other equations are unmodified. This formulation is
termed the one-by-twoe GMC (or MCE)-SP method. 1In essence, the utili-
zation of Equation (56) has increased the order of the function by 2.
For example, Equations (35) and (36) are, respectively, linear and
quadratic in r, but Equations (57) and (58) are cubic and quartic in
r, respectively. All one-by~three methods can be similarly modified
by incorporating Equation (56) in their representation of the shock
angle and the shock detachment distance, and will be termed
accordingly.

RESULTS AND DISCUSSION

The governing ccupled nonlinear algebraic equations are solved
iteratively by the Newton-~Raphison method. All of the one-strip
solutions obtained so far are tabulated in Tables 1 to 3. Most of
the results do not go above M, = 4. This is because, for shock-
interference problems, we are mostly interested in lower supersonic
Mach numbers. There i3, however, an upper 1imit on the free-stream
Mach number above which no physically acceptable solutions can be
obtained by the present one-strip formulation of the method of
integral relations. This happens when the location of the surface
sonic point, n, is along the line of the jet edge (r = 1l}. The trend,
that n decreases toward unity as M, increases as predicted by the
theory, was also observed experimentally by Hunt and co-workers
(Refs. (8) and (14)). However, the actual coccurrence of n = 1 is
believed to be due to the approximation introduced by the solution
method. Forturately. this generally occurs above Ms = 4 and hence
is not of serious concern to us for the rresent problem,

RSV NS R NS SR SR e A L0}

(14Y Carling, J. C. and Hunt, B. L., "The Near Wall Jet of a
Normally Impinging, Uniform, Axisymmetric, Supersonic Jet,"
Journal of Fluid Mechanics, Vol. 66, 1974, pp. 159-176
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There is also a lower liwmit on M, below which no physically
acceptable solutions can be obtained. For the planar case, this
happens when the calculated value of Msl reaches unity. The fact

that it occurs at M, > 1 is again due to the approximate nature of
the solution method. Foxr the axisymmetric case, this happens at a
much higher value of My, and the reason for its occurrence is not
understood at the present time. Fortunately, a quite wide range of
M, does :xist between which meaningful solutions have been obtained.
Because of this much higher value of the lower limit on M, for the
axisymmetric case, the majority of the results obtained is for the
planar case and these results will be discussed first. The results
for axisymmetric flows will be briefly considered later. All resulte
shown are for v = 1.4.

PLANAR JET IMPINGEMENT
The results of the stagnaticn-point velocity gradient as obtained
by the various methods are shown in Figqures 3 and 4 as a function of
M,. All solutions show the same trend, namely, the ini‘ial rapid
du
increase of (E?!) at low Mach numbers, and the slow rise tcward the
0

asymptote at high Mach numbers. The difference between one-by-two
and one-by-~-three formulations is seen to be moderate at high Mach
numbers, and it drops very rapidly as M_ is decreased. The same can
be said in regard to tne different choice of the governing equations
between GMC and MCE methods. The application of more complicated
profiles (SP method) greatly reduces the differences between one-py-
two and one-by-three formulations, but one-by-three results display
only small effects by the application of these more complicated
profiles. in fact, results indicate that the one-by-~three formu-
lation is quite insensitive to different approximating functions
employed in general. This is not always the case when other

quantities away from the stagnation point are consiiered, as we shall
see later.

The detachment distance of the shock and the upper boundary of
the wall jet as predicted by the corresponding one-by-two and one-by-
three formulations is shown in Figures 5 to 7 according to different
applications of the method of integral relations. All results show
the following trend: (1) both the shouck layer and the wall-jet layer
become thicker as M, decreases; (2) a3 M, decreases, the location of
the surface sonic point moves away from the line of the jet edge
(r = 1); and (3) for a fixed M,, the moderate difference between
one-by-two and one-by-three formulations at the symmetry line
{r = 0) is reduced even further at the line of the jet edye (r = 1j.

The surface Mach number evaluated at r = 3, Mwl’ and the Mach
number behind the shock at r = 1, Msl' are depicted in Figure 8 as

functions of M_. Clearly, neither Mwl nor Msl is generally equal to

unity. Hence the boundary conditions employed in References (8) and
(9) are incorrect. The corresponding values of the shock angle at
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the line of the jet edge, J,+ as obtained from various methods are
73 showr: in Figures9 and 10. Similar to Msl’ they are seen to be more
method-dependent than quantities such as Mwl'
The surface pressure distribution, as shown in Figure 11, indi-
: cates the general insensitivity of the results to various schemes

employed. The only noticeable difference is the somewhat fuller
profile predicted by the one-by-three formulation.

It therefore appears from self-consistency that reasonable
enginzering solutions for the stagration-point velocity gradient
(hence eo) and M., (hence U and pwl) have beci obtained. Since

heat-transfer rate is proportional to the square root of the velocity
gradient at the stagnation point {(Refs. (15) and (16),, peak-heating
prediction is thus even less methcd-dependent. This, however, is in
direct contras. to the axisymmetric case which, to be discussed

next, is seen to be far from converging.

AXISYMMETRIC JET IMPINGEMENT

Among all the methoas employed, only one-by-two GHC and MCE
schemes have prcduced solutions which appear not to violate some of
the obvious physical constraints such as Pyo > Py2 > Py1 2 Pyn and,

as Ms decreases, both (duw/dr)0 and uwl will alsc decrease. The

results are tabulated in Tables 32 and 3b. The lcwest M, shown in
each table is the lower limit of the Mach number below which no
solution is obtainable. As we can see, the corresponding Msl is far

from being unity. The reason for the existence of this relatively
nigh value of the lower limit of M_ is not understood at the present
time.

The axisymmetric results are qualitatively similar to the planar
solutions. There are noticeable differences also. For example, for
the axisymmetric case, the shock-layer thickness drops off at a much
faster rate as one moves away from the stagnation peint. This results
in a smaller shock angle, Oy and a thinner wall-jet layer. In fact,

the rate that o

M
sl
trend is clearly opposite to that of the pianar case which shows the

1 drops with respect to decreasing M_ is so large that

turns out to be increasing slightly as M_ is decreased. This

1157 Cohen, C. B. and Reshotko, E., "Similar Solutions for the
Compressible Laminar Boundary Layer with Heat Transfer and
Pressure Gradient," NACA Rpt 1293, Lewis Research Center,
Cleveland, Ohio, 1956

(16) Fay, J. A. and Riddell, F. R., "Theory of S‘agnation Point Heat
Transfer in Dissociated Air," Journal of the Aeronautical
Sc’ences, Yol. 25, 1958, pp. 73-85, 121
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monotonic decreasing behavior as was depicted in Figure 8. Since the
axisymmetric solution appears to be very method-dependent (as can be
seen easily by the fact that even one-by~-two GMC- and MCE-SP methods
yield no physically accertable solutions), results obtained by other

methods are needed before these different trends can be ascertained
or refuted.

CONCLUSIONS

The major conclusion that we may draw from the present study is
that solutions that satisfy all well-posed bourdary conditions can
be obtained by the one-strip formulation of the method of integral
relations. The application of the scheme III of the methocd has
enabled us to avoid both the unwanted singularity at the low super-
sonic Mach number and the numerical difficulty of satisfying the
regyularity condition at the surface sonic point peculiar to the
scheme I of the method. tional engineering solutions for the
stagnation-point velocity gradient and, hence, the peak heat-transfer
rate have beesn obtained for a planar supersonic balanced jet
impinging normally on a flat surface. However, more theoretical
and/or experimental studies are needed before present results can be
quantitatively assessed. ‘'Toward this goal, a two-strip formulation
of the method of integral relations has been completed. Unfor-
tunately, because of the time limitations, no quantitative results
have yet been obtained. For the sake of completeness, this formu-
lation is included in the Appendix.

Since, for impingement angles betveen normal (90 degrees) and
about 50 degrees, the effect of the angle of impingement on the
peak pressure was found experimentally by Henderson (Ref. (17)) to be
small, the present planar jet-impingement model might be coupled with
the shock-interference model of Edney (Ref. (1)) as programmed by
Morris and Keves (Ref. (18)) tc predict type IV shock-interaction
effects. In view of the extremely short computer time required by
the present method (typically less than five secords on a CDC 6500
computer for one converged solution at one Mach number), this
approach iz indeed very attractive.

(17) Henderson, L. F., "Experiments on the Impingement of a Super-
sonic Jet on a Flat Plate," 2AMP, Vol. 17, 1966, pp. 553-569

(18) Morris, D. J. and Keyes, J. W., "Computer Programs for Predict-~
ing Supersonic and Hypersonic interference Flow Fields and

§§§§ing," NASA TM X-2725, Langley Research Center, Hampton, Va.
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APPENDIX A

TWO-STRIP FCRMULATION OF THE JET-IMPINGEMENT PROBLEM

METHOD OF INTEGRAL RELATIONS - SCHEME I

The flow field i1s divided into two strips in the axial (y-)
direction by the middle line y = €¢/2. The governing eguations are
different depending on whether they are in the shock layer
(0 £ r £1) or in the wall-jet laver (1 < r < n).

A. SHOCK-LAYER REGION.
(2) from 0 to €/2, we obtain

c(xr)/2 . . .
%f[ rjouvdy - %— g—% rijquH + xJ {S(pH - p.)

Integrating the axial moment equation

w
2 2) _
+ opvy - pwvw}- 0 (A1)

where the subscript H denotes quantities evaluated at y = ¢/2. If a
quadratic prcfile in y is assumed for the integrands in Equations
(Al) and (27), after some algebra, we may obtain, as an approximation
to Equation (2), the following two ordinary differential equations:

a .3 3
a;(r epsusvs) + 4r {psvs(vs + uscoto)

- pHVH(ZvH + uHcoto) + B(pS - 2pH + pw)} =0 (A2)
é—(rjep u,v,,) + 51 {p v_(v_ + n_coto) +
dr H' B H 2 s 8 'S s
ZpHvH(ZvH + uHcoto) + B(ps + 4pH - 5pw)} =0 {A3)
Equations (5) and (17) have been used in the above equations.
Similariy, Eguations (1) and (3) yield
d_ 13 - I (e, (2
ar |f c(pwuw psus) + 4r pH( vy + uHcoto)
- pglvg + uscoto)} =0 {n4)
a [,3 , Iso (v 4
ar I e(ZDHaH + psus) +r Sps(»s T uscoto)
- % -\= AS\
20y 2vH + uHCOCC)J 0 {AS;
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d j 2 _ 2 _ . j

T [r e(pwuw + Bpw PUg Bps)] + 4r {pHuH(ZvH + uHcoto)

- osus(vs + “s°°t°) + B(pH - ps)coto} = jBe(pw - ps) (A6)
and "

a .3 2 2 j
ar [r e(psus + BpS + ZpHuH + ZBpH)] +r {Spsus(vs + uscoto)

- 2ppup(2vy + ugcoto) + B(Sp, - ZpH)coto} = jBe(2py + pg) (A7)

The energy Equation (4) gives

_ S
P, = ow(l uw) (A8)
and _ 2 2
pﬁ = pH (1 - uH - VH) (A9)

Thus, Equation (A2) defines the rate of changt of o, Equations (A4),
(A6) and (A8) thore of u_, p, and p_, and Equations (a3), (as), (A7)

and (A9) those of uy, vy, ¢, and Py- Because of Equation (18), one

rmay replace Equations (A6) and (A8) by the simpler algebraic
relations, Equation (30) and

A, S

B 2 l/ (Y”l} %

1 hd U.w *

P, = | ~& (Al0) :
w EsO §§

Ty g

Therefcre, there are six ordinary differential equaticns (Egs. (5),

(A2} to (A5) and (A7)) for o, €, U Uyr Yy and Py Initial

conditions are, from Ecuations (19) to (21), at r = 0

uHO =0
qu =0
2 1/(7"1)
o |11 - ¥y
HO = |—F—
s0
and 0o = n/2 {

The two missing initial conditions for €0 and Vyp are suppilied by the

two regularity conditions at the surface gonic point and the singu-
larity on the middle line. It is known for the jet-impingement
problem that the surface sonic point, r = n, is outside the shock

A-2

TR e e I Rt AN =
N

- o e e
T AN~ SENR L e e Sk Al - - W g N
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layer (Ref. (8)), but the location of the other "sonic" point on the
middle line relative to the line of the jet edge (r = 1) is unknown
a priori. These singularities and the associated regularity
conditions, well-known for blunt-kody problems, are essential for

closing the system of equations. They will be discussed in detail
later.

Because the structure of Equation (£2) is similar to Equation
(28), Equation (A2) will also become singular as

d(psusvs)

do =0

and do/dr will become unbounded. A formulation based on scheme III
will thus be required. Before this, however, we shall complete the

present discussion of the scheme I method by considering the wall-
iet region.

B. WALL-JET REGION. Integrating Equations (1) to (3) from the
plate to the middle 1ine and from the plate to the upper boundary
of the wall jet, anu after some straightforward algebra, we obtain

a3 3 - - -

Tt epjujvj) + 4r {8(pj 2p, + p,) PyVy(2vy + uycotd)} =0 (All)
g—(rjsp u.v,. ) + 51{2p v.(2v.. + u_.cotd) + B( + 4 - 5p. )} = 0 (A12)
ar HH B T 7 tePyVplevy + uy Py Py = 2P,

d (] - 3 =
dr[r e(pwuw pjuj)] + 4r pH(ZvH + uHcotS) 0 (A13)

a .3 - 2pd =
dr[r e(ZpHuH + pjuj)] 2y pH(ZvH + uHcotG) 0 (Al14)

daf.3 2 2 3 -
dr[r e(pjuj + ZpHuH + Bpj + ZBpH{] +r {B(Spj 2pH)cot6

- ZpHuH(ZVH + uHcotG)} = jBe(2p, + pj) (A15)

As in the shock layer, the other ordinary differential
equation that comes from the radial momentum eguation (3) is re-~
placed by the algebraic eguations {30) and {Al6). In addition,
there is the geometric relation, Equation (6), the boundary conditions
at the wall-jet boundary, Equations (8) to (16), and the energy
equation (A9). Therefore, there are six ordinary differential

equations (Egqs. (6), and (All) to (AlS)) for €, 6, Ur Uye Vg and

A-3
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Py Matching conditions at r = 1 supply the initial conditions.
One may combine Equations (Al3) and (Al4) to give

j _ .
r e(owuw + 4°H“n + ojuj) = el(pwluwl + 4°H1qu + pjujl) {al6)

which, being an algebraic relation, can be used to replace, e.qg.,
Equation (Al4).

C. REGULARITY CONDITIONS. Utilizing Equation (Al0) and after

some straightforward algebra, we may rewrite Equation (Al3) in the
form

where

- Yy +1, 2
Py [1 =7 “w]
To have a finite value of duw/dr at the singularity given by

Equation (33), we require that Ny * 0 as D, 0 at r = n, This

provides us with the regularity condition which, using Equation (All)
at r = n to get rid of dén/dr and after some straightforward algebra,

p C ta ( c : * 1 6

+ 4°Hn(2vﬂn + ancoth)(qjcoszén + v cosdn)

Hn

-~ 48cosc§n(pj - 2py, * P ) =0 (A17)

wn

The location of the singularity on the middle line is again
unknown a priori. Two different formulations are needed depending
on whether it is larger than 1 or otherwise. Let's consider the
first case (henceforth referred to as Case W), and denote the
singularity to be at r = £ > 1,

From Equations (A9), (Al2), (Al4) and (Al5) we may obtain

r D2

where
D2 (v + 1)uH + {y 1)(vH 1)

A-4
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Therefore, as D2 + 0 at r = £, we need to impose the regularity
condition that N2 + 0 at r = §£. Using Equation (All) at r = § to get
rid of ddg/dr (where the subscript £ denotes quantities evaluated

at &) and after some tedious but straightforward algebra, we may
obtain the regularity condition

2
p.g.

inZs 1)siné ihi 5
3 Js:m g{(Y - 1l)sin £ - Yqj"ng] - - cot £

+ pHE(ZVHE + uHECOtGE)[?A(l + 3v§E - u;g) - 4CBVHE]

je
- - _£ -
+ CAuHE [(ij pHg)COtég E png] + B[4CB(pj ZPHE
+ pWE) + CAng(pj + 4pHE - 5pw€)] =0 (A18)
where
Cp = (y - l)qjc0526E
C. =

B (1 -y + 2yqjuH581n5€)coséE

1/2
= |[r-—1 - 2
uHE [(Y T 1) (l VHEX (A19)

It is easy to show that Equation (Al9) is equivalent to Upe = aye -

and , at r = §

Let us now consider the case when the singularity on the middle
line occurs in the shock layer. Henceforth, we shall refer to this
case as Case S and denote the singularity to be at r = § < 1.

From Equations (A3), (AS), (A7) and (A9) we may obtain
Hi

3

duH _

dr D

where again
D, ~ (y + L)u + (y - 1) (v® - 1)
3 B H

This is to be expected since the structure of the governing
equations in both layers is similar. Therefore, as Dy + 0 at

r =1z, N3 -~ 0. Using Equation (A2) at r = 7 to get rid of doc/dr
(where the subscript f denotes quantities evaluated at r = g) and

s 7 - oy e - . R
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after some tedious but straightforward algebra, we obtain, at

r =13
1/2
_ -2\f, _ .2
uHC = [(z——:—f)(l ’HC)] (A20)
and
d(p_u_v_) :
[f""gag“g‘] ;[uH(Bps + psuz) - ZBpsus] (éﬁ - coto)

+ ps(vs + uscotc)[SusuH + Ze(vsvH - 57 + 2BpH(2vH + uHcotd)

(1 + 3v§ - ug) + B(Spg - 2pyluycoto + 282VH(ps + 4py - 5p)
‘ dp, d(psug) dlpguy)
- jBuge(2py + psvr;- Buy z=2 + Uy ——Sf - 28 8 8

i€ _ -
{psusvs(r cdéto) + 4[p8vs(v8 + uscoto) pHvH(ZVH

+ ugcoto) + B(p, - 2p, + pw)]} =0 (a21)

where Equation (A2l1) is evaluated at r = g.

D. STAGNATION-POINT VELOCITY GRADIENT. Dividing Equation
(A2) by rl and taking the limit as r + 0, we obtain

(L + )p. v ne ey 4{ vi - 20 w2
Pg0Vs0%0 ‘ar 0 Ps0Vs0 PHO" 19

+ Blpgg = 2Py ¥ Pwo’} =0
Similarly, Equation (A4) yields

' duw du8
1+ 3)€o;°wo‘aE"o - °so‘ai"0} + 4(2050VHo = PgoVsp) = O

Eliminating (dus/dr)0 from the above two equations we obtain

du, 4120p0V40 (Veo = Vgo) = B(Pgy = 2Pyy + Pyl
ar 1. © (1 + 3)p, VA€ (A22)
0 J w0 8070

for fixed values of M_ and Y, Equation (A22) indicates that the
product eo(duw/dx,o dzpends also on Vuo*
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METHOD OF INTEGRAL RELATIONS -~ SCHEME III

2 two-by-four formulation will be presented as an example below.
To extend the formulatian to two-by-n with n > 4 is straightforward,
but the algebra involved will be much more complicated. In addition,
there will be more equations to solve. This certainly will aggravate
the convergence problem. For simplicity, we shall only present the
details of Case W. The other case is very similar.

The flow field is divided in the radial direction into (0, %l

1, £, n). In the shock layer, Equations (48) to :£3) obviously still
hold. 1In addition, Equations (A2) to (AS5) are of the form of

Equation (51), and hence they can be put into the forms of

Equations (52) and (53), with the integrals and coefficients given
by Equations (52a) to (53d). Equation (A7) is of the form

daf J.oo_ o
a_r.+rg_]h (A23)

where g and h are, respectively, odd and even in r. 1In addition,
99 = 0. Straightforward integrations of Equation (A23) over r yieid

172 1/2
£, - £ +f rlgdr = j/ hdr (A24)
0
and 0
l L] l
£, - £, +/ rlgdr = jf hdr (A25)
0 0

Consider the continuous approximating functions for g and h as

g = El8g, - g, + 4(g; - 2g,)r’]
(16h, - h, - 15h.) 4(3h, + h, - 4h,)
-~ 2 1 0 2 0 1 2 4
h = ho + 3 r + 3 r
Equations (A24) and (A25) become *
2

£, - £4-+ g-:o (a9, - b ;h) =0 , k=1,2 (A26a,b)

30" 30 =0

a . w i3]t 4)
n-3G+3+D

a . 16
12 I F G+

8 ek
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_2-(j+l)
221 TIFFOEFD
o o 22834 30 4 1y
22 J + j +
0
bio = %
=1
b1y = 35
324 :
by, = 55% ‘
b - }-?.i
20 T 80

and

D} =+
~3

22
In the wall-jet layer, consider

2

- rz)(sz =~ rz) cots, +

de - (n
- === cotf * r
dr [(n - 1) (£% - 1) 1

(a27)

(52 - rz)(l ~ r2) cots + (n2 - rz)(l - rz) cots ]
n(£2 = n) (1 - nd) N Em? - g9 - £ £

Direct integration yields

2 cotéd
- (x® - 1) { 1 2.2 2 2 2
E = g, = [6n“E” = 3(n° + EX)(x° + 1) +
1 2 - 1) (€2 - 1)
4. 2 cots 2 2 2
2(r" + r“ + 1)1 + [68° - 3(E° + 1)(x° + 1) +
n(E’ - nz)(l - ﬂz)
coté
20t v 22 e 14— % 5= t6n% = 3in2 + D (x2 + 1) +
En™ = ET)(1 - £)
2 ¢ 22 4 1)1} (A28)
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After some algebra, we obtain

2 . coté
e€=e1-(glzll{ I (3?2 -¢2.- 2 -

2
(n® = 1) (a29)
coté 2 cotd
n 2 2 2
(¢ - 1) - -——3——5—-—-(25 - 3n" + l)}
n(€% = %) (1 - n) E(n? - £2)

and €N is obtained by interchanging £ and n in Equation (A29).

Equations (All) to {Al4) are of the form of Equation (51). The
even function g can now be zvproximated again by the Lagrangian
interpolation formula

U S N (Al o WO Al < N ¢ R )
m-nEi-1 1 @-ndHa-ah M

g

2 2 2
(n® - r°) (1 - %)

+ - (A30)
2 - £ (1L - £2) &

which is symmetric in £ and n, i.e., the equation iz un...anged by 1
interchanging £ and n. Integrating Equation (51) over r and using
Equation (A30), we obtain

fa - fl + glG(n,Eol ; a) + gnG(lpﬁm : a) +

ggG(lm,E ;a) =0 ; a=§g,n (A31a,b)
where
S.(x,y:r)

; G(x,¥,2 ; ¥) ¥ —gd——y (A32)
X (x° - 29)(y® - 2°)
; and
s S, (x,y:r) = <2yl [r(j+1) - 1] - _3(:_?__4-_%;1 [r(j+3)
: j eYi: ﬁ—"‘LTY 3 +
2 |
" (3+5) -I ‘
! r -1 ]

£

!

| Equation (Al5) is of the form of Fguation (A23). Using

i Lagrangian interpolation formula for awproximating the odd and even
i functions g and h, respectively, we obtain by straightforward

: integration
i
|
%

A-9




- — ———————

NSWC/WOL/TR 75-195

!
\
|
Fég £, - £, + g H(n,E, 1 a) + g H(L,En; a) + g H(L,n,E

;7 a) = %
JIhIK(ﬂ'Erl ; a) + hnK(lrgln ;oa) + hEK(lpn:E ;7 a)l H a=¢§,n
(A34a,b)
where §j+1(x’y s x)
H{x,y,z ; x) = 5 % = (A35)
z(x" - z27)({y" - 2%)
and
( ) So(x,y ; r) ( )
K(x,y,2 ; r) A36
(x2 - zz)(y2 - zf;
There are 22 basic uniuowns in the two-by-four formulation: €gr €3
i

Eyr v Spe Uuns Vys Vuer Vyor Vyae Vgie Vuer Vuns Y2’ Vg1’ Yan’
Pya’ Py1e Pger PHn’ £ and n. The basic equations are: Equations

(A2) to !A5) in the forms of Equations (52) and (53); Equation (A7)
in the forms of Equations (A26a,b); Equaticas (All) to (Al4) in the
forms of Equations (A3la,b); Equation (Al5) in the form of
Equations (A34a,b); and the regularity conditions, Equations (Al7)

and (Al8). Total number of equations is also 22 and the system is
closed.
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